Exercise 16

Use the definition of continuity and the properties of limits to show that the function is continuous on the given interval.

$$
g(x)=\frac{x-1}{3 x+6}, \quad(-\infty,-2)
$$

Solution

Assuming that $-\infty<a<-2$, calculate the limit of $g(x)$ as x approaches a using the limit laws.

$$
\begin{aligned}
\lim _{x \rightarrow a} g(x) & =\lim _{x \rightarrow a} \frac{x-1}{3 x+6} \\
& =\frac{\lim _{x \rightarrow a}(x-1)}{\lim _{x \rightarrow a}(3 x+6)} \\
& =\frac{\lim _{x \rightarrow a} x-\lim _{x \rightarrow a} 1}{\lim _{x \rightarrow a} 3 x+\lim _{x \rightarrow a} 6} \\
& =\frac{\lim _{x \rightarrow a} x-\lim _{x \rightarrow a} 1}{3 \lim _{x \rightarrow a} x+\lim _{x \rightarrow a} 6} \\
& =\frac{a-1}{3 a+6} \\
& =g(a)
\end{aligned}
$$

Therefore, $g(x)=\frac{x-1}{3 x+6}$ is continuous on the interval $(-\infty,-2)$.

